HOMEWORK 8 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 4.2: The Mean Value Theorem
4.2.6. $f(0)=f(\pi)=0$, but $f^{\prime}(x)=\sec ^{2}(x)>0$. This does not contradict Rolle's Theorem because f is not continuous on $[0, \pi]$ (it is discontinuous at $\frac{\pi}{2}$.
4.2.11. $\ln (x)$ is continuous on $[1,4]$, differentiable on $(1,4) ; c=\frac{3}{\ln (4)}$
4.2.18. Let $f(x)=x^{3}+e^{x}$

At least one root: $f(-1)=-1+e^{-1}<0$ and $f(0)=0+e^{0}=1>0$ and f is continuous, so by the Intermediate Value Theorem (IVT) the equation has at least one root.

At most one root: Suppose there are two roots a and b. Then $f(a)=f(b)=0$, so by Rolle's Theorem there is at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$. But $f^{\prime}(c)=3 c^{2}+e^{c} \geq e^{c}>0$, so $f^{\prime}(c) \neq 0$, which is a contradiction, and hence the equation has at most one root.
4.2.23. By the MVT, $\frac{f(4)-f(1)}{4-1}=f^{\prime}(c)$ for some c in $(1,4)$. Solving for $f(4)$ and using $f(1)=10$, we get $f(4)=3 f^{\prime}(c)+10 \geq 6+10=16$.
4.2.29. This is equivalent to showing:

$$
\left|\frac{\sin (a)-\sin (b)}{a-b}\right| \leq 1
$$

Which is the same as:

$$
\left|\frac{\sin (b)-\sin (a)}{b-a}\right| \leq 1
$$

Which is the same as:

$$
-1 \leq \frac{\sin (b)-\sin (a)}{b-a} \leq 1
$$

But by the MVT applied to $f(x)=\sin (x)$, we get:

$$
\frac{\sin (b)-\sin (a)}{b-a}=\cos (c)
$$

for some c in (a, b). However, $-1 \leq \cos (c) \leq 1$, and so we're done!

[^0]4.2.32. Let $f(x)=2 \sin ^{-1}(x), g(x)=\cos ^{-1}\left(1-2 x^{2}\right)$.

Then $f^{\prime}(x)=\frac{2}{\sqrt{1-x^{2}}}$ and:
$g^{\prime}(x)=-\frac{-4 x}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}=\frac{4 x}{\sqrt{1-1+4 x^{2}-4 x^{4}}}=\frac{4 x}{\sqrt{4 x^{2}-4 x^{4}}}=\frac{4 x}{2 x \sqrt{1-x^{2}}}=\frac{2}{\sqrt{1-x^{2}}}=f^{\prime}(x)$
(you get this by factoring out $4 x^{2}$ out of the square root. This works because $x \geq 0$)

Hence $f^{\prime}(x)=g^{\prime}(x)$, so $f(x)=g(x)+C$

To get C, plug in $x=0$, so $f(0)=g(0)+C$. But $f(0)=g(0)=0$, so $C=0$, whence $f(x)=g(x)$
4.2.34. Let $f(t)$ be the speed at time t. By the MVT with $a=2: 00$ and $b=2: 10$, we get:

$$
\frac{f(2: 10)-f(2: 00)}{2: 10-2: 00}=f^{\prime}(c)
$$

But 2: $10-2: 00=10$ minutes $=\frac{1}{6} \mathrm{~h}$, so:

$$
\frac{50-30}{\frac{1}{6}}=f^{\prime}(c)
$$

Whence: $f^{\prime}(c)=120$ for some c between $2: 00 \mathrm{pm}$ and $2: 10 \mathrm{pm}$. But $f^{\prime}(c)$ is the acceleration at time c, and so we're done!

Section 4.3: How derivatives affect the shape of a graph
4.3.2.
(a) $(0,1) \cup(3,7)$
(b) $(1,3)$
(c) $(2,4) \cup(5,7)$
(d) $(0,2) \cup(4,5)$
(e) $(2,2),(4,2.5),(5,4)$

4.3.9.

(a) $f^{\prime}(x)=6 x^{2}+6 x-36=6(x-2)(x+3)$; \nearrow on $(-\infty,-3) \cup(2, \infty)$, \searrow on $(-3,2)$
(b) Local max: $f(-3)=81$; Local min: $f(2)=-44$
(c) $f^{\prime \prime}(x)=12 x+6$; CU on $\left(-\frac{1}{2}, \infty\right)$, CD on $\left(-\infty, \frac{-1}{2}\right)$, $\mathrm{IP}\left(-\frac{1}{2}, f(-0.5)=\frac{37}{2}\right)$
4.3.13.
(a) $f^{\prime}(x)=\cos (x)-\sin (x) ; \nearrow$ on $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, \infty\right), \searrow$ on $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
(b) Local max: $f\left(\frac{\pi}{4}\right)=\sqrt{2}$; Local min: $f\left(\frac{5 \pi}{4}\right)=-\sqrt{2}$
(c) $f^{\prime \prime}(x)=-\sin (x)+\cos (x)$; CU on $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$, CD on $\left(0, \frac{3 \pi}{4}\right) \cup\left(\frac{7 \pi}{4}, 2 \pi\right)$, IP $\left(\frac{3 \pi}{4}, 0\right),\left(\frac{7 \pi}{4}, 0\right)$
4.3.27. A possible graph looks like this:

1A/Math 1A - Fall 2013/Solution Bank/Concave-Kink.png

4.3.33.
(a) $f^{\prime}(x)=3 x^{2}-12, \nearrow$ on $(\infty,-2) \cup(2, \infty)$, \searrow on $(-2,2)$
(b) Local min: $f(2)=-14$, Local max: $f(-2)=18$
(c) $f^{\prime \prime}(x)=6 x$; CD on $(-\infty, 0), \mathrm{CU}$ on $(0, \infty)$; Inflection point at $(0,2)$
(d) Draw the graph!
4.3.43.
(a) $f^{\prime}(\theta)=-2 \sin (\theta)-2 \cos (\theta) \sin (\theta)=-2 \sin (\theta)(1+\cos (\theta)) ; ~ \nearrow$ on $(\pi, 2 \pi)$, \searrow on $(0, \pi)$
(b) Local min: $f(\pi)=-1$, no local max.
(c) $f^{\prime \prime}(x)=-2 \cos (\theta)+2 \sin ^{2}(\theta)-2 \cos ^{2}(\theta)=-2 \cos (\theta)+2-4 \cos ^{2}(\theta)=$ $-4\left(\cos ^{2}(\theta)-\frac{\cos (\theta)}{2}-\frac{1}{2}\right)=-4(\cos (\theta)+1)\left(\cos (\theta)-\frac{1}{2}\right) ; \mathrm{CU}$ on $\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right), \mathrm{CD}$ on $\left(0, \frac{\pi}{3}\right) \cup\left(\frac{5 \pi}{3}, 2 \pi\right)$, IP $\left(\frac{\pi}{3}, \frac{5}{4}\right),\left(\frac{5 \pi}{3}, \frac{5}{4}\right)$
(d) Draw the graph!
4.3.45.
(a) VA: $x=0, \mathrm{HA}: y=1$ (at $\pm \infty$)
(b) $f^{\prime}(x)=-\frac{1}{x^{2}}+\frac{2}{x^{3}}=\frac{2-x}{x^{3}} ; \searrow$ on $(\infty, 0) \cup(2, \infty), \nearrow$ on $(0,2)$
(c) Local maximum at $\left(2, \frac{5}{4}\right)$, No local minimum
(d) $f^{\prime \prime}(x)=\frac{-6 x^{2}+2 x^{3}}{x^{6}}=\frac{-6+2 x}{x^{4}}=\frac{2 x-6}{x^{4}} ; \mathrm{CD}$ on $(-\infty, 0) \cup(0,3), \mathrm{CU}$ on $(3, \infty)$; IP at $\left(3, \frac{11}{9}\right)$
(e) Draw the graph!

4.3.49.

(a) No VA; HA: $y=0($ at $\pm \infty)$
(b) $f^{\prime}(x)=(-2 x) e^{-x^{2}}, \nearrow$ on $(-\infty, 0), \searrow$ on $(0, \infty)$
(c) Local maximum at $(0,1)$, no local minimum
(d) $f^{\prime \prime}(x)=\left(-2+4 x^{2}\right) e^{-x^{2}}=2\left(2 x^{2}-1\right) e^{-x^{2}} ; \mathrm{CU}$ on $\left(-\infty,-\frac{1}{\sqrt{2}}\right) \cup\left(\frac{1}{\sqrt{2}}, \infty\right)$; IP at $\left(\pm \frac{1}{\sqrt{2}}, e^{-\frac{1}{2}}\right)$
(e) Draw the graph!
4.3.77. Let $f(x)=\tan (x)-x$, then $f^{\prime}(x)=\sec ^{2}(x)-1=1+\tan ^{2}(x)+1-1=$ $\tan ^{2}(x)>0$ on $\left(0, \frac{\pi}{2}\right)$, hence f is increasing on $\left(0, \frac{\pi}{2}\right)$. In particular, $f(x)>f(0)=$ 0 , so $\tan (x)-x>0$, so $\tan (x)>x$ on $\left(0, \frac{\pi}{2}\right)$

Section 4.4: L'Hopital's Rule

4.4.3.

(a) $\mathrm{No},-\infty$
(b) Yes, $\infty-\infty$
(c) No, ∞

4.4.4.

(a) Yes, 0^{0}
(b) No, 0
(c) Yes, 1^{∞}
(d) Yes, ∞^{0}
(e) No, ∞
(f) Yes, ∞^{0}
4.4.11.

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}} \frac{\cos (x)}{1-\sin (x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}} \frac{-\sin (x)}{-\cos (x)}=\frac{-1}{-0^{-}}=\frac{-1}{0^{+}}=-\infty
$$

4.4.17.

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

4.4.29.

$$
\lim _{x \rightarrow 0} \frac{\sin ^{-1}(x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{1-x^{2}}}}{1}=1
$$

4.4.45.
$\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{2 x e^{x^{2}}}=\frac{3}{2} \lim _{x \rightarrow \infty} \frac{x}{e^{x^{2}}}=\frac{3}{2} \lim _{x \rightarrow \infty} \frac{1}{2 x e^{x^{2}}}=\frac{3}{2} \times 0=0$

4.4.58.

1) Let $y=\left(1+\frac{a}{x}\right)^{b x}$
2) $\ln (y)=b x \ln \left(1+\frac{a}{x}\right)$
3)

$\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} b x \ln \left(1+\frac{a}{x}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{a}{x}\right)}{\frac{1}{b x}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+\frac{a}{x}}\right)\left(-\frac{a}{x^{2}}\right)}{\left(-\frac{1}{x^{2}}\right)\left(\frac{1}{b}\right)}=\lim _{x \rightarrow \infty} \frac{a b}{1+\frac{a}{x}}=a b$
4) So $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}=e^{a b}$

4.4.61.

1) Let $y=x^{\frac{1}{x}}$
2) Then $\ln (y)=\frac{\ln (x)}{x}$
3) So $\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0$
4) Hence $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=\lim _{x \rightarrow \infty} y=e^{0}=1$
4.4.77. All you gotta do is show that:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}=e^{r t}
$$

1) Let $y=\left(1+\frac{r}{n}\right)^{n t}$
2) $\ln (y)=n t \ln \left(1+\frac{r}{n}\right)$
3) The important thing to realize is that you're taking the limit as n goes to ∞, which means that r and t are constants!
$\lim _{n \rightarrow \infty} \ln (y)=\lim _{n \rightarrow \infty} n t \ln \left(1+\frac{r}{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{r}{n}\right)}{\frac{1}{n t}}=\lim _{n \rightarrow \infty} \frac{\frac{\frac{-r}{n^{2}}}{1+\frac{r}{n}}}{-\frac{1}{n^{2} t}}=\lim _{n \rightarrow \infty} \frac{\frac{r n^{2} t}{n^{2}}}{1+\frac{r}{n}}=\lim _{n \rightarrow \infty} \frac{r t}{1+\frac{r}{n}}=\frac{r t}{1+0}=r t$
4) So $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}=e^{r t}$, and hence $\lim _{n \rightarrow \infty} A_{0}\left(1+\frac{r}{n}\right)^{n t}=A_{0} e^{r t}$

[^0]: Date: Friday, November 1st, 2013.

